Energy Efficient Low Latency Routing Design for Target Tracking Applications of Wireless Sensor Network

Author:

Lokesh Deepika1,Reddy N. V. Uma2

Affiliation:

1. AMC Engineering College, Bangalore, 560076, India

2. ew Horizon college of Engineering, Bangalore, 560103, India

Abstract

Target tracking is the greatest important applications in Wireless Sensor Networks (WSNs). The wireless sensor network applications have been increasing since the IoT has been established. Most of the applications have various kind of sensors to transmit the information from one source to another. The basic operation of a wireless sensor network is to sense the data, collect the data and transmit the data from time to time whenever the base station requires the data for evaluation. Improving the reliability, performance for the collection of the data is the main role of the wireless sensor device. Moreover, the objective of the wireless sensor network device is to minimize the latency and improve the energy efficiency in order to provide more reliability is a major performance metric for provisioning WSNs. In this paper, we have presented an Energy Efficient Low Latency Routing (EELLR) design for Target Tracking (TT) Applications of Wireless Sensor Network. This model provides reliability and has a better performance in terms of communication overhead, energy efficiency and packet processing latency reduction when compared with the existing routing-based models.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Harvesting from Railway Tracks: Technologies and Applications;2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies;2024-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3