Leakage Detection and Localization of Water Pipeline Using Multi-features and Adaptive Time Delay Estimation

Author:

Liu Yang1,Chen Ze1,Liu Zhongyan1,Liu Xin1,Yu Guochen1,Na Shun1

Affiliation:

1. College of Electronic Information Engineering, Inner Mongolia University, Hohhot, 010021, China

Abstract

The leakage of water in pipelines severely affects the environment and economy. However, there are limitations in the effectiveness of existing leak detection and localization techniques and methodologies. In this paper, we propose a novel leakage detection and localization method based on the multiple time-frequency features, a neural network, and an adaptive time delay estimation algorithm. First, we use spectral subtraction and wavelet denoising to reduce the effects of noise. In addition, to ensure and improve the accuracy of leakage detection in complex realistic environments, we propose the use of multi time-frequency features that can comprehensively represent the leak signal and make the neural network more robust to train a radial basis function (RBF)neural network to detect the leak signal. Further, we extract multiple features of the leakage signal and input into the RBF neural network to train. Moreover, to prevent the impulsive components of environmental noise and improve localization accuracy, we further propose the use of a fractional lower-order statistics (FLOS) based adaptive time delay estimation algorithm to estimate the time delay and locate the leakage. The simulation results show that the detection and localization performance of the proposed method is superior to those of existing schemes.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3