Design and Performance Analysis of Low Power and High Throughput of Analog Data Compression and Decompression using ANN in 32nm FinFET Technology

Author:

Venkatesh G. K.1,Bhargavi S.2,Hiremath Basavaraj V.3,Anil Kumar C.4

Affiliation:

1. Dept of ECE, CBIT, India

2. Dept of ECE, S J C Institute of Technology, Chickballapur, India

3. Department of Medical Electronics Engineering, M S Ramaiah Institute of Technology, Bengaluru, India

4. Dept of ECE, R.L.J.I.T Doddaballapur, India

Abstract

The development and fabrication of integrated circuits for the applicational areas of VLSI such as processing of the signal, medicine tomography, telecommunication turn out to be a novel technology for the upcoming innovations. The fabrication of IC’s is attributable to the methodology in the technology of VLSI and when compared to artificial Neural Network, the genetic performance of these productions is approximately the same and are typically employed for diagnosing the syndrome, compression as well as the decompression of signal used in the medical domain. Techniques such as HMM, DCT, as well as PCA are employed for compression and decompression of signals but these approaches still possess some disadvantages. Therefore, to overcome these issues, a chip-level design for Artificial Neural Network is proposed that makes use of FinFET 32 nm technology and includes sigmoid activation function (SAF), Gilbert cell number, as well as bias circuits to prolong the compressed magnitude relation and accuracy. As a result, with the help of the Cadence Virtuoso analog tool, the Artificial Neural Network has been designed using FinFET 32nm technology along with all the details of sub-units such as Layout vs Schematic (LVS), Design rule check (DRC), RC extraction as well as chip level (GDS-II). Feed Forward Artificial Neural Network (FWANN) is considered as one of the most basic types of ANN and it is implemented using the concept of Back Propagation (BP). The simulation results of the suggested 16-bit 6TRAM cell were found to have 8%, 21%, and 0.9% improvement in consuming power, delay, and compressed data losses respectively.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3