Pneumatic Cylinders Controlled by Two Different Controllers, Arduino and MyRIO: an Educational Approach

Author:

Ghinea Mihalache1,Agud Mihai1,Bodog Mircea1,Agud Mark Antonio2

Affiliation:

1. University POLITEHNICA of Bucharest, Faculty of Industrial Engineering and Robotics, Dept. of Robots and Manufacturing Systems, Romania

2. University of Oradea, Faculty of Management and Technological Engineering, Romania

Abstract

Nowadays, new pneumatic equipment is becoming attrac-tive to many industries that are beginning to accept the idea of replacing their hydraulic equipment with pneumatic one. Beginner engineers and students have a hard time under-standing the differences between different controllers in the market and their applicability. This article provides in-formation to support the understanding of the way the elec-tronic control of stand-alone pneumatic systems works. This comparative study provides future specialists with the core knowledge concerning the influence that controllers have on the operation of pneumatic systems, as well as the principles of the controllers' utilization. The steps to take in controllers' utilization list the construction of the block diagram of an electronically controlled pneumatic system, followed by the simulation of the pneumatic system using modern software tools and ended by the assembly of the physical system and its programming by means of different classes controllers. If the control by pneumatic devices was still accepted, thus maintaining full-pneumatic systems on the market, the use of industrial electronic controllers would become indispensable both for more precise control of the systems and for increased industrial integrability. The compared results of a double-acting pneumatic cylin-der control using the Arduino Uno and MyRIO-1900 con-trollers (academic equipment and for stand-alone applica-tions) are presented. This way, the problem of pneumatic installations that requires equal forces to move the load in both directions is solved. The study performed a compari-son of the times and cycles of the piston rod, variables that are defined in many applications. These results are also compared with those obtained by simulation using Automa-tion Studio software (AS). The study was conducted to assess the interchangeability of both controllers in this common architecture. The research results are a step forward to-wards the implementation of electronic control in pneu-matic systems using industrial controllers and then towards the harmonization of the structures thus established with systems in Industry 4.0.

Publisher

North Atlantic University Union (NAUN)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3