Development of Short-term Flood Forecast Using ARIMA

Author:

Wong Wei Ming1,Lee Mohamad Yusry1,Azman Amierul Syazrul1,Rose Lew Ai Fen2

Affiliation:

1. Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka (UTeM) Melaka, Malaysia

2. Fakulti Pengurusan Teknologi dan Teknousahawan Universiti Teknikal Malaysia Melaka (UTeM) Melaka, Malaysia

Abstract

The aim of this study is to use the Box-Jenkins method to build a flood forecast model by analysing real-time flood parameters for Pengkalan Rama, Melaka river, hereafter known as Sungai Melaka. The time series was tested for stationarity using the Augmented Dickey-Fuller (ADF) and differencing method to render a non-stationary time series stationary from 1 July 2020 at 12:00am to 30th July 2020. A utocorrelation (ACF) and partial autocorrelation (PACF) functions was measured and observed using visual observation to identify the suitable model for water level time series. The parameter Akaike Information Information Criterion (AIC) and the Bayesian Information Criterion (BIC) were used to find the best ARIMA model (BIC). ARIMA (2, 1, 3) was the best ARIMA model for the Pengkalan Rama, with an AIC of 5653.7004 and a BIC of 5695.209. The ARIMA (2, 1, 3) model was used to produce a lead forecast of up to 7 hours for the time series. The model's accuracy was tested by comparing the original and forecast sequences by using Pearson r and R squared. The ARIMA model appears to be adequate for Sungai Melaka, according to the findings of this study. Finally, the ARIMA model provides an appropriate short-term water level forecast with a lead forecast of up to 7 hours. As a result, the ARIMA model is undeniably ideal for river flooding.

Publisher

North Atlantic University Union (NAUN)

Subject

Applied Mathematics,Computational Mathematics,Mathematical Physics,Modelling and Simulation

Reference25 articles.

1. M. I. Ibrahim, “KPKT sediakan RM25.9 juta bendung banjir kilat,” Berita Harian Online, 2019.

2. S. K. Subramaniam, V. R. Gannapathy, S. Subramonian, and A. H. Hamidon, “Flood level indicator and risk warning system for remote location monitoring using flood observatory system,” WSEAS Trans. Syst. Control, vol. 5, no. 3, pp. 153–163, 2010.

3. “Review of The National Water Resources Study (2000-2050) and Formulation of National Water Resources Policy-Volume 16-Melaka.”

4. S.-S. Yoon, “Adaptive Blending Method of Radar-Based and Numerical Weather Prediction QPFs for Urban Flood Forecasting,” 2019, doi: 10.3390/rs11060642.

5. N. H. Ab Razak, A. Z. Aris, M. F. Ramli, L. J. Looi, and H. Juahir, “Temporal flood incidence forecasting for Segamat River (Malaysia) using auto-regressive integrated moving average (ARIMA) modelling,” J. Flood Risk Manag., no. 11, pp. 56–63, 2016, doi: 10.5874/jfsr.1.56.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid SVD-ARIMA Method for Sales Forecasting with Sparse Data on E-Commerce Products;2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom);2022-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3