A numerical study on the low-velocity impact response of hybrid composite materials

Author:

GEZER Uzay1ORCID,DEMİR Bünyamin1ORCID,KEPİR Yusuf1ORCID,GÜNÖZ Alper1ORCID,KARA Memduh1ORCID

Affiliation:

1. MERSIN UNIVERSITY

Abstract

Composite materials are advanced engineering materials with superior properties to traditional materials. One of the most important disadvantages is the high cost of composite materials. Therefore, producing composite materials from the first to the last stage is a very important process. Homogenization is the most important parameter in production since composites contain more than one material type in their structure. In addition, composite structures are sensitive materials against low-velocity impacts. In this study, the effect of reinforcement material combination and stacking sequence on mechanical properties used in the production of composite materials was investigated by low-velocity impact simulations using LS-DYNA software. The mass of the 12 mm diameter spherical impactor used in the analyzes was determined as 10 kg and low-velocity impact tests were applied at 20 J, 30 J and 40 J energy levels. The composite samples were modeled with 180x100mm dimensions and the contact between the impactor and the sample was made from the center of the composite structure. Numerical analyzes were performed using the Tsai-Wu damage criterion in the LS-DYNA software, and material properties were defined using the "Mat_Enhanced_Composite_Damage (MAT 055)" material card.

Publisher

Turkish Journal of Engineering

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3