Comparative study on obtaining paper and thread-based microfluidics via simple fabrication techniques

Author:

Okutan Arslan Nagihan1ORCID,Atta Ragheid Mohammed Helmy2ORCID,Trabzon Levent1ORCID

Affiliation:

1. ISTANBUL TECHNICAL UNIVERSITY

2. Taibah University

Abstract

Microfluidic paper-based analytical devices (µPADs) and microfluidic thread-based analytical devices (µTADs) have recently been introduced as a new class of on-site monitoring devices. Creating hydrophilic channels with hydrophobic barriers on papers/threads produces µPADs/µTADs. Fabrication is a crucial step in creating durable µPADs/µTADs that can withstand various liquids and impact the device's performance. Fabrication materials with distinct physicochemical properties allow microfluidic systems with sophisticated functions to be customized for specific applications. We present flexible and low-cost fabrication methods for µPAD and µTAD platforms. Platform designs and fabrications were implemented using a trial-and-error method for various designs with varying parameters. All production methods presented in the method section were used in µPAD production. For comparison studies, only the dipping method was used in µTAD production due to its ease of application. In this study, we tried to reveal the strengths and weaknesses of the production techniques and the resulting microfluidic platforms. A leaching test was performed with water solutions containing red ink. The compatibility of the hydrophobic walls of the platforms was tested with several solvents (isopropanol, methanol, and acetone), deionized (DI) water, and phosphate buffer solution PBS and compared. Patterning paper with polydimethylsiloxane (PDMS), white glue, alkyl ketene dimer (AKD), beeswax, and paraffin are much more flexible and simpler than traditional photoresist-based fabrications. The advantages and disadvantages of fabrication techniques; solvent resistance and wicking behaviors of platforms were discussed in the last part. The fabricated microfluidic platforms can be functionalized and used in many areas where analytical tests are applied. Studies on diversifying channel geometries and increasing resolution need to be continued. It should be investigated which devices can be used to obtain qualitative and quantitative results. To make simple and cheap production techniques suitable for mass production, studies should be carried out from different branches.

Funder

TUBITAK and ITU BAP

Publisher

Turkish Journal of Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3