Vital ex vivo tissue labeling and pathology-guided micropunching to characterize cellular heterogeneity in the tissue microenvironment

Author:

Johnson Brian P.1,Vitek Ross A.1,Geiger Peter G.1,Huang Wei23,Jarrard David F.24,Lang Joshua M.125,Beebe David J.12

Affiliation:

1. Department of Biomedical Engineering, University of Wisconsin, Madison, WI

2. Carbone Cancer Center, University of Wisconsin, Madison, WI

3. Department of Pathology, University of Wisconsin, Madison, WI

4. Department of Urology, University of Wisconsin, Madison, WI

5. Department of Medicine, University of Wisconsin, Madison, WI

Abstract

Cellular heterogeneity within the tissue microenvironment may underlie chemotherapeutic resistance and response, enabling tumor evolution; however, this heterogeneity it is difficult to characterize. Here, we present a new approach—pathology-guided micropunching (PGM)—that enables identification and characterization of heterogeneous foci identified in viable human and animal model tissue slices. This technique consists of live-cell tissue labeling using fluorescent antibodies/small molecules to identify heterogeneous foci (e.g., immune infiltrates or cells with high levels of reactive oxygen species) in viable tissues, coupled with a micropunch step to isolate cells from these heterogeneous foci for downstream molecular or vital functional analysis. Micropunches obtained from epithelial or stromal fibroblast foci in human prostate tissue show 6- to 12-fold enrichment in transcripts specific for EpCam/cytokeratin 8 and vimentin/a-smooth muscle actin/integrin 1-α, respectively. Transcriptional enrichment efficiency agrees with epithelial and stromal laser capture microdissection samples isolated from human prostate. Micropunched foci show a loss of cellular viability in the periphery, but centrally localized cells retained viability before and after dissociation and grew out in culture.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3