Time Course of Bioluminescent Signal in Orthotopic and Heterotopic Brain Tumors in Nude Mice

Author:

Burgos J.S.1,Rosol M.1,Moats R.A.1,Khankaldyyan V.1,Kohn D.B.1,Nelson M.D.1,Laug W.E.1

Affiliation:

1. Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA

Abstract

In vivo bioluminescence imaging is becoming increasingly popular. Quantification of bioluminescent signals requires knowledge of the variability and reproducibility of this technique. The objective of this study was to analyze the time course of luminescent signal emitted from firefly luciferase-expressing tumors in two locations, following luciferin injection and at different times after tumor cell implantation. Knowledge of the kinetics of the bioluminescent signals is required for the reliable quantification and comparison of signal during longitudinal studies. The kinetics of bioluminescence was evaluated in orthotopic and heterotopic brain tumors in mice using a human brain tumor cell line constitutively expressing luciferase. Tumor cells were implanted in the brains and flanks of the animals, and wholebody images revealing tumor location were obtained. Tumor burden was monitored over time by the quantitation of photon emission. The magnitude of bioluminescence measured in vivo varied with time after the injection of luciferin, as well as with dose, which necessitated that the comparison of the quantitative results take into consideration the time after injection. Heterotopic and orthotopic tumors exhibited significantly different time courses; however, time after implantation as characterized by kinetic studies performed on days 4 and 14 after cell implantation revealed no significant differences in orthotopic tumors. Future quantitative longitudinal studies must take into account the differences in the kinetics of different models.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3