Quantification of particle-conjugated or particle-encapsulated peptides on interfering reagent backgrounds

Author:

Yap Woon Teck12,Song W. Kelsey32,Chauhan Niharika12,Scalise P. Nina32,Agarwal Radhika32,Miller Stephen D.4,Shea Lonnie D.3256

Affiliation:

1. Department of Biomedical Engineering, Northwestern University, Evanston, IL

2. Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL

3. Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL

4. Departments of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Evanston, IL

5. Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL

6. Chemistry of Life Processes Institute, Northwestern University, Evanston, IL

Abstract

Particle-based technologies are increasingly being used in diagnostics and therapeutics. The particles employed in these applications are usually composed of polymers such as poly(lactide-co-glycolide) (PLG) and functionalized with peptides or proteins. Peptide or protein conjugation to particles is frequently achieved using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), while dimethyl sulfoxide (DMSO) is used to retrieve surface-attached or encapsulated peptides or proteins by solubilizing the particles. We examined strategies based on bicinchoninic acid (BSA), Coomassie Plus, and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) assays for the quantification of surface-attached or encapsulated peptides or proteins. We determined that the CBQCA assay is a highly sensitive and accurate substitute for radioactivity-based assays that is suitable for measuring multiple particle-bound or particle-encapsulated peptides or proteins in the presence of EDC or PLG in DMSO, compounds that interfere with the more commonly used BSA and Coomassie Plus assays. Our strategy enables the accurate quantification of peptides or proteins loaded onto or into particles—an essential component of particle-based platform design for diagnostics and therapeutics.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3