Direct Quantitation of RNA Transcripts by Competitive Single-Tube RT-PCR and Capillary Electrophoresis

Author:

Borson N.D.1,Strausbauch M.A.1,Wettstein P.J.1,Oda R.P.1,Johnston S.L.1,Landers J.P.1

Affiliation:

1. Mayo Clinic/Foundation, Rochester, MN, USA

Abstract

Attempts are frequently made to semiquantitate mRNA as a means of circumventing the laborious and time-consuming process of quantitation that is inherent in the use of competitor templates. However, semiquantitative approaches present the risk of generating non-reproducible data due to tube-to-tube variability and/or misinterpretation of quantities of product being generated during the plateau phase of PCR. Subsequently, it is difficult to compare semiquantitative data from separate experiments, and comparisons of levels of mRNA transcript from genes that amplify with different primer pairs cannot be made. Thus, reliable methods for mRNA quantitation continue to rely on the use of internal standardization. In this report, we describe a strategy for dependable quantitation of lowabundance mRNA transcripts based on quantitative competitive reverse transcription PCR (QC-RT-PCR) coupled to capillary electrophoresis (CE) for rapid separation and detection of products. Recommendations are included for the design of RNA competitors that can be paired with target RNA for cDNA synthesis primed with a gene-specific primer; these synthesized cDNAs are then co-amplified directly in the same tube using a single primer pair. We describe (i) a protocol for a single-tube RTPCR that provides for cDNA synthesis and subsequent PCR amplification of target and competitor in identical reaction environments at each critical enzymatic step, (ii) a unique hot-start provision for optimizing precise and consistent PCR amplifications and (iii) a method for rapid PCR product separation, detection and quantitation by CE and laser-induced fluorescence.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3