Validation of oligonucleotide microarray data using microfluidic low-density arrays: a new statistical method to normalize real-time RT-PCR data

Author:

Abruzzo Lynne V.1,Lee Kathleen Y.1,Fuller Alexandra1,Silverman Alan1,Keating Michael J.1,Jeffrey Medeiros L.1,Coombes Kevin R.2

Affiliation:

1. The University of Texas M.D Anderson Cancer Center, Houston, TX

2. Applied Biosystems, Foster City, CA, USA

Abstract

Profiling studies using microarrays to measure messenger RNA (mRNA) expression frequently identify long lists of differentially expressed genes. Differential expression is often validated using real-time reverse transcription PCR (RT-PCR) assays. In conventional real-time RT-PCR assays, expression is normalized to a control, or housekeeping gene. However, no single housekeeping gene can be used for all studies. We used TaqMan® Low-Density Arrays, a medium-throughput method for real-time RT-PCR using microfluidics to simultaneously assay the expression of 96 genes in nine samples of chronic lymphocytic leukemia (CLL). We developed a novel statistical method, based on linear mixed-effects models, to analyze the data. This method automatically identifies the genes whose expression does not vary significantly over the samples, allowing them to be used to normalize the remaining genes. We compared the normalized real-time RT-PCR values with results obtained from Affymetrix Hu133A GeneChip® oligonucleotide microarrays. We found that real-time RT-PCR using TaqMan Low-Density Arrays yielded reproducible measurements over seven orders of magnitude. Our model identified numerous genes that were expressed at nearly constant levels, including the housekeeping genes PGK1, GAPD, GUSB, TFRC, and 18S rRNA. After normalizing to the geometric mean of the unvarying genes, the correlation between real-time RT-PCR and microarrays was high for genes that were moderately expressed and varied across samples.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3