RNA Amplification Results in Reproducible Microarray Data with Slight Ratio Bias

Author:

Puskás László G.1,Zvara Ágnes1,Hackler László1,Hummelen Paul Van1

Affiliation:

1. Hungarian Academy of Sciences, Szeged, Hungary

Abstract

Microarray expression analysis demands large amounts of RNA that are often not available. RNA amplification techniques have been developed to overcome this problem, but limited data are available regarding the reproducibility and maintenance of original transcript ratios. We optimized and validated two amplification techniques: a modified in vitro transcription for the linear amplification of 3 μg total RNA and a SMARTTM PCR-based technique for the exponential amplification of 50 ng total RNA. To determine bias between transcript ratios, we compared the expression profiles in mouse testis versus spleen between the two amplification methods and a standard labeling protocol, using microarrays containing 4596 cDNAs spotted in duplicate. With each method, replicate hybridizations were highly reproducible. However, when comparing the amplification methods to standard labeling, correlation coefficients were lower. Twelve genes that exhibited inconsistent or contradictory expression ratios among the three methods were verified by quantitative RT-PCR. The amplification methods showed slightly more discrepancies in the expression ratios when compared to quantitative RT-PCR results but were more sensitive in terms of detecting expressed genes. In conclusion, although amplification methods introduce slight changes in the transcript ratios compared to standard labeling, they are highly reproducible. For small sample size, in vitro transcription is the preferred method, but one should never combine different labeling strategies within a single study.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3