Rapid assay to detect possible natural substrates of proteases in living cells

Author:

Boonacker Emil1,Elferink Sjoerd1,Bardai Abdennasser1,Wormmeester Jan1,Van Noorden Cornelis J.F.1

Affiliation:

1. University of Amsterdam, Amsterdam, The Netherlands

Abstract

Proteolysis is a regulatory step in many physiological processes, but which proteases in what cellular sites are involved in activation or degradation of which peptides is not well known. We developed a rapid assay consisting of living cells and fluorogenic protease substrates to determine which bioactive peptides are possible natural substrates of a specific protease with the multifunctional or moonlighting protein CD26/dipeptidyl peptidase IV (DPPIV) as a model. CD26/DPPIV catalyzes cleavage of peptides from the amino terminus of peptides with proline at the penultimate position. Many biologically active peptides, such as β-casomorphin1-5, contain proline in the penultimate position. We incubated living Jurkat cells, which are T cells that lack CD26/DPPIV, and CD26/DPPIV-transfected Jurkat cells in the presence of the fluorogenic substrate [Ala-Pro]2-cresyl violet (Magic Red) and β-casomorphin1-5. Fluorescent cresyl violet was generated by CD26/DPPIV-transfected Jurkat cells but not by wild-type Jurkat cells with a Km of 3.7 μM. β-Casomorphin1-5 appeared to be a possible natural substrate of CD26/DPPIV, because it inhibited production of fluorescence competitively (Ki = 60 μM). The assay using living cells and a fluorogenic protease substrate is an efficient system to determine whether specific peptides are possible natural substrates of a particular protease.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3