Oligonucleotide microarray analysis of aminoallyl-labeled cDNA targets from linear RNA amplification

Author:

Kaposi-Novak Pal1,Lee Ju-Seog1,Mikaelyan Arsen1,Patel Vyomesh2,Thorgeirsson Snorri S.1

Affiliation:

1. National Cancer Institute

2. National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA

Abstract

Single-stranded long oligonucleotide-based (50- to 70-mer) microarrays offer several advantages over conventional cDNA microarrays. These include the easy preparation of the probes, low cost of array production, and low cross-contamination during probe handling. However, the application of oligonucleotide microarrays for the analysis of global gene expression with small amounts of total RNA using the conventional oligo(dT)-T7 promoter-based amplification is hampered by the single-stranded nature (sense strand) of oligonucleotide probes in microarrays. In this report, we describe modified RNA amplification methods generating antisense-labeled cDNA targets and a successful application for oligonucleotide microarray gene expression analysis. In the first round, mRNA was amplified linearly with oligo(dT)24T7-primed reverse transcription and in vitro transcription by T7 RNA polymerase. In the second round, random 9-mer T3 primers and T3 RNA polymerase were used to generate sense-strand amplified RNA (aRNA). Fluorescently labeled cDNA targets were generated from the aRNA and hybridized to the oligonucleotide microarrays. Our data show that the amplification provides highly reproducible results, as evidenced by a significant correlation between the amplified and nonamplified samples. We also demonstrate that amplification of RNA derived from laser-microdissected tumor samples reproduced the gene expression profiles that were obtained from total RNA isolated from the same samples.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3