Yeast growth selection system for detecting activity and inhibition of dimerization-dependent receptor tyrosine kinase

Author:

Gunde Tea1,Barberis Alcide1

Affiliation:

1. ESBATech AG, Zürich-Schlieren, Switzerland

Abstract

Receptor tyrosine kinases (RTKs) play an important role in the control of fundamental cellular processes, including cell proliferation, migration, differentiation, and survival. Deregulated RTK signaling is critically involved in the development and progression of human cancer. Here, we present an assay for monitoring RTK activities in yeast, which provides an ideal heterologous cellular system to study these mammalian proteins in a null background environment. With our system, we have reconstituted aspects of the epidermal growth factor receptor (EGFR) signaling pathway as a model. Our approach is based on the Ras-recruitment system, in which membrane localization of a constitutively active human Ras achieved through protein-protein interactions can rescue growth of a temperature-sensitive yeast strain (cdc25-2). We show that co-expression of a dimerizing membrane-bound EGFR variant with specific adaptor proteins fused to the active Ras rescues growth of the cdc25-2 mutant yeast strain at the nonpermissive temperature. Using kinase-defective RTK mutants and selective EGFR kinase inhibitors, we demonstrate that growth rate of this yeast strain correlates with kinase activity of the EGFR derivatives. The RTK cellular assay presented here can be applied in high-throughput screens for selecting RTK-specific inhibitors that must be able to permeate the membrane and to function in an eukaryotic intrecellular environment.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3