Affiliation:
1. Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
Abstract
Protein stability can be monitored by many different techniques. However, these protocols are often lengthy, consume large amounts of protein, and require expensive and specialized instruments. Here we present a new protocol to analyze protein unfolding kinetics using a quantified real-time thermocycler. This technique enables the analysis of a wide range of denaturants (and their interactions with temperature change) on protein stability in a multi-well platform, where samples can be run in parallel under virtually identical conditions and with highly sensitive detection. Using this set-up, researchers can evaluate the half-maximal rate of protein denaturation (Knd), maximum rate of denaturation (Dmax), and the cooperativity of individual denaturants in protein unfolding (µ-coefficient). Both lysozyme and hexokinase are used as model proteins and urea as a model denaturant to illustrate this new method and the kinetics of protein unfolding that it provides. Overall, this method allows the researcher to explore a large number of denaturants, at either constant or variable temperatures, within the same assay, providing estimates of denaturation kinetics that have been previously inaccessible.
Subject
General Biochemistry, Genetics and Molecular Biology,Biotechnology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献