An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10–tagged DNA probes

Author:

Gudnason Haukur1,Dufva Martin1,Duong Bang Dang2,Wolff Anders1

Affiliation:

1. DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby

2. Laboratory of Applied Micro-Nanotechnology, Department of Poultry, Fish and Fur Animals, National Veterinary Institute, Technical University of Denmark, Aarhus, Denmark

Abstract

Microarrays printed on glass slides are often constructed by covalently linking modified oligonucleotide probes to a derivatized surface at considerable expense. In this article, we demonstrate that 14-base oligonucleotides with a poly(T)10 – poly(C)10 tail (TC tag), but otherwise unmodified, can be linked by UV light irradiation onto a plain, unmodified glass surface. Probes immobilized onto unmodified glass microscope slides performed similarly to probes bound to commercial amino-silane–coated slides and had comparable detection limits. The TC-tagged probes linked to unmodified glass did not show any significant decrease in hybridization performance after a 20 min incubation in water at 100°C prior to rehybridization, indicating a covalent bond between the TC tag and unmodified glass. The probes were used in thermal minisequencing cycling reactions. Furthermore, the TC tag improved the hybridization performance of the immobilized probes on the amino-silane surface, indicating a general benefit of adding a TC tag to DNA probes. In conclusion, our results show that using TC-tagged DNA probes immobilized on an unmodified glass surface is a robust, heat-stable, very simple, and inexpensive method for manufacturing DNA microarrays.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3