Sea urchin embryo as a model organism for the rapid functional screening of tubulin modulators

Author:

Semenova Marina N.1,Kiselyov Alexander2,Semenov Victor V.23

Affiliation:

1. Institute of Developmental Biology

2. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia

3. Chemical Block Ltd., Limassol, Cyprus

Abstract

Identification of antimitotic molecules that affect tubulin dynamics is a multistep procedure. It includes in vitro tubulin polymerization assay, studies of a cell cycle effect, and general cytotoxicity assessment. To simplify this lengthy screening protocol, we have introduced and validated an assay system based on the sea urchin embryos. The proposed two-step procedure involves the fertilized egg test for mitotic arrest and the behavioral assessment of a free-swimming blastula. In order to validate the assay, we have analyzed the effect of a panel of known antiproliferative agents on the sea urchin embryo. For all tubulin destabilizing drugs, we observed rapid spinning and lack of forward movement of an embryo. Both effects are likely to result from the in vivo microtubule disassembly caused by test molecules. Notably, the described assay yields rapid information on antiproliferative, antimitotic, cytotoxic, and tubulin destabilizing activities of the molecules along with their solubility and permeability potential. Moreover, measured potencies of the test articles correlated well with the reported values in both in vitro and cell based assays.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3