Three-dimensional migration of neutrophils through an electrospun nanofibrous membrane

Author:

Jin Songwan1,Park Tae-Min2,Kim Cho-Hee3,Kim Jin-Soo1,Le Binh Duong1,Jeong Young Hun4,Kwak Jong-Young5,Yoon Sik6

Affiliation:

1. Department of Mechanical Engineering, Korea Polytechnic University, Siheung, Gyeonggy-do, South Korea

2. Department of Advanced Convergence Technology, Korea Polytechnic University, Siheung, Gyeonggy-do, South Korea

3. Department of Biochemistry, Dong-A University, Busan, South Korea

4. School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea

5. Department of Pharmacology, Ajou University School of Medicine, Suwon, Gyeonggy-do, South Korea

6. Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, South Korea

Abstract

The study of immune cell migration is important for understanding the immune system network, which is associated with the response to foreign cells. Neutrophils act against foreign cells before any other immune cell, and they must be able to change shape and squeeze through narrow spaces in the extracellular matrix (ECM) during migration to sites of infection. Conventional in vitro migration assays are typically performed on two-dimensional substrates that fail to reproduce the three-dimensional (3-D) nature of the ECM. Here we present an in vitro method to simulate the 3-D migration of neutrophils using an electrospun nanofibrous membrane, which is similar to the ECM in terms of morphology. We examined the properties of neutrophil movement and the effects of gravity and the presence of IL-8, which has been widely used as a chemotactic attractant for neutrophils. The number of neutrophils passing through the nanofibrous membrane were higher, and their movement was more active in the presence of IL-8. Also, we confirmed that neutrophils could migrate against gravity toward IL-8 through a nanofibrous membrane.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3