Affiliation:
1. University of Chicago, Chicago, IL, USA
Abstract
There are little independent data available about how well single nucleotide polymorphism (SNP) genotyping technologies perform in the typical molecular genetics laboratory. We evaluated the utility and accuracy of a widely used technology, template-directed dye-terminator incorporation with fluorescence-polarization detection (FP-TDI), in a sample of 177 SNPs selected solely on the basis of map location. Genotypes were generated without optimization using standard protocols. Overall, 81% of the SNPs we studied generated readable genotypes by FP-TDI. Thirty-two SNPs were genotyped in duplicate by PCR-RFLP or fluorescent dye-terminator sequencing. Out of a total of 631 duplicate genotypes, no true discrepancies were detected. The true error rate has a 95% chance of lying between 0 and 6 out of 1000 genotypes. We also tested for deviations from Hardy-Weinberg Equilibrium in 33 SNPs genotyped in 50 unrelated individuals, and no significant deviations were detected. Our FP-TDI data were readily adaptable to automated genotype calling using our own method of cluster analysis, which assigns a probability score to each genotype call. We conclude that FP-TDI is both efficient and accurate. The method can easily fill the needs of SNP genotyping projects at the scale typically used for regional or candidate-gene association studies.
Subject
General Biochemistry, Genetics and Molecular Biology,Biotechnology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献