Universal SNP Genotyping Assay with Fluorescence Polarization Detection

Author:

Hsu T.M.1,Chen X.1,Duan S.1,Miller R.D.1,Kwok P.-Y.1

Affiliation:

1. Washington University School of Medicine, St. Louis, MO, USA

Abstract

The degree of fluorescence polarization (FP) of a fluorescent molecule is a reflection of its molecular weight (Mr). FP is therefore a useful detection method for homogeneous assays in which the starting reagents and products differ significantly in Mr. We have previously shown that FP is a good detection method for the single-base extension and the 5′-nuclease assays. In this report, we describe a universal, optimized single-base extension assay for genotyping single nucleotide polymorphisms (SNPs). This assay, which we named the templatedirected dye-terminator incorporation assay with fluorescence polarization detection (FP-TDI), uses four spectrally distinct dye terminators to achieve universal assay conditions. Even without optimization, approximately 70% of all SNP markers tested yielded robust assays. The addition of an E. coli ssDNA-binding protein just before the FP reading significantly increased FP values of the products and brought the success rate of FP-TDI assays up to 90%. Increasing the amount of dye terminators and reducing the number of thermal cycles in the single-base extension step of the assay increased the separation of the FP values between the products corresponding to different genotypes and improved the success rate of the assay to 100%. In this study, the genomic DNA samples of 90 individuals were typed for a total of 38 FP-TDI assays (using both the sense and antisense TDI primers for 19 SNP markers). With the previously described modifications, the FP-TDI assay gave unambiguous genotyping data for all the samples tested in the 38 FP-TDI assays. When the genotypes determined by the FP-TDI and 5′-nuclease assays were compared, they were in 100% concordance for all experiments (a total of 3420 genotypes). The four-dye-terminator master mixture described here can be used for assaying any SNP marker and greatly simplifies the SNP genotyping assay design.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3