Optimization of Single-Cell Gel Electrophoresis (SCGE) for Quantitative Analysis of Neuronal DNA Damage

Author:

Morris E.J.1,Dreixler J.C.1,Cheng K.-Y.1,Wilson P.M.1,Gin R.M.1,Geller H.M.1

Affiliation:

1. University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, Piscataway, NJ, USA

Abstract

Neuronal death can be induced by DNAdamaging agents and occurs by apoptosis involving a specific signal-transduction pathway. However, to our knowledge, methods for the quantitative determination of DNA damage in individual neurons have not yet been described. Here we optimize the single-cell gel electrophoresis (SCGE) or “comet”-assay to measure DNA damage within individual neurons growing in dissociated cell culture. In addition, we have written a macro for the NIH Image program to determine the tail moment of individual comets. We have calibrated this method using γ-irradiated (0–16 Gy) cerebral cortical neurons from the rat central nervous system. Neuronal DNA damage (in the form of DNA strand breaks) occurs in a linear, dose-dependent manner, which can be quantitatively determined in vitro using the SCGE assay. These data demonstrate that the SCGE assay is an effective method to measure DNA damage in individual neurons and may be highly useful for the study of neuronal DNA damage formation, repair and apoptosis.

Publisher

Future Science Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Biotechnology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3