Enhancing phenol removal from waste water by adding powder activated carbon to the lab-scale activated sludge system

Author:

Nguyen My Linh ,Nguyen Duy Dat

Abstract

In this study, the commercial powder activated carbon (PAC) was added to a bench scale conventional activated sludge (CAS) system to enhance phenol removal. The mixed liquor suspended solid (MLSS) concentration of CAS with adding PAC was stable in all stages of operation, while MLSS concentrations in CAS without PAC addition sharply decreased as the Phenol loading reached 1.8 g phenol/L.day. Higher removal of chemical oxygen demand (COD) and Phenol achieved with the CAS by PAC addition compared with those achieved with CAS without PAC addition. The difference in COD removal efficiency was 7 - 9% in stages 3 and 4 (0.8 and 1.2 g phenol/L.day, respectively), and about 33% in stage 5 (1.8 g phenol/L.day). The advantage of CAS with PAC addition was clearly observed in the highest phenol loading (1.8 g phenol/L.day) because the MLVSS/MLSS ratio of CAS with PAC addition increased and the COD and phenol removal efficiencies kept stable in this stage, while reverse trends were found for CAS without PAC addition. The results indicated that the adaptive ability of the CAS by adding PAC was significantly higher than the CAS without AC addition. This study offers useful preliminary results for applying a hybrid system between CAS and adsorption with PAC for further research and application in future.

Publisher

Ho Chi Minh City University of Technology and Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3