Identifying Informative Nodes in Attributed Spatial Sensor Networks Using Attention for Symbolic Abstraction in a GNN-based Modeling Approach

Author:

Schwenke LeonidORCID,Bloemheuvel Stefan,Atzmueller MartinORCID

Abstract

Modeling complex data, e.g. time series as well as network-based data, is a prominent area of research. In this paper, we focus on a combination of both, analyzing network-based spatial sensor data which is attributed with high frequency time series information. We apply a symbolic representation and an attention-based local abstraction approach, to enhance interpretability on the respective complex high frequency time series data. For this, we aim at identifying informative measurements captured by the respective nodes of the sensor network. To do so, we demonstrate the efficacy of the Symbolic Fourier Approximation (SFA) and the attention-based symbolic abstraction method to localize relevant node sensor-information, by using a transformer architecture as an encoder for a graph neural network. In our experiments, we compare two seismological datasets to their previous state-of-the-art model, demonstrating the advantages and benefits of our presented approach.

Publisher

University of Florida George A Smathers Libraries

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Neural Network-Based Time Series Analysis in Wireless Sensor Networks;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

2. Graph Neural Network-Based Measurement Inference on Irregular Sensor Geometries;2023 IEEE 21st International Conference on Industrial Informatics (INDIN);2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3