A Learning Approach to Evaluate the Quality of 3D City Models

Author:

Ennafii Oussama,Le Bris Arnaud,Lafarge Florent,Mallet Clément

Abstract

The automatic generation of three-dimensional (3D) building models from geospatial data is now a standard procedure. An abundance of literature covers the last two decades, and several solutions are now available. However, urban areas are very complex environments. Inevitably, practitioners still have to visually assess, at a city-scale, the correctness of these models and detect frequent reconstruction errors. Such a process relies on experts and is highly time-consuming, with approximately two hours/km 2 per expert. This work proposes an approach for automatically evaluating the quality of 3D building models. Potential errors are compiled in a novel hierarchical and versatile taxonomy. This allows, for the first time, to disentangle fidelity and modeling errors, whatever the level of details of the modeled buildings. The quality of models is predicted using the geometric properties of buildings and, when available, Very High Resolution images and Digital Surface Models. A baseline of handcrafted, yet generic, features is fed into a Random Forest classifier. Both multiclass and multilabel cases are considered: due to the interdependence between classes of errors, it is possible to retrieve all errors at the same time while simply predicting correct and erroneous buildings. The proposed framework was tested on three distinct urban areas in France with more than 3000 buildings. 80%–99% F-score values are attained for the most frequent errors. For scalability purposes, the impact of the urban area composition on the error prediction was also studied, in terms of transferability, generalization, and representativeness of the classifiers. It showed the necessity of multimodal remote sensing data and mixing training samples from various cities to ensure a stability of the detection ratios, even with very limited training set sizes.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing and benchmarking 3D city models;International Journal of Geographical Information Science;2022-11-08

2. CityJSON Building Generation from Airborne LiDAR 3D Point Clouds;ISPRS International Journal of Geo-Information;2020-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3