Geometric Calibration for the Aerial Line Scanning Camera GFXJ

Author:

Wang Tao,Zhang Yan,Zhang Yongsheng,Jiang Gangwu,Zhang Zhenghao,Yu Ying,Dou Lijun

Abstract

The Gao Fen Xiang Ji (GFXJ) is the first Chinese self–developed airborne three–line array charge-coupled devices (CCD) camera and is designed to meet 8 cm ground sample distance (GSD), 0.5 m planimetry accuracy, and 0.28 m elevation accuracy for ground three-dimensional (3D) points at a flight height of 2000 m. These values also meet the 1:1000 scale mapping requirements in China. However, the original direct geopositioning accuracy of the GFXJ is approximately 4 m in the planimetry direction and 6 m in the elevation direction. To meet the ground 3D point accuracy requirements and improve the direct geopositioning accuracy of the GFXJ, this paper carries out a deep investigation on the GFXJ geometric calibration. This geometric calibration includes two main parts: the Global Navigation Satellite System (GNSS) lever arms and inertial measurement unit (IMU) boresight misalignment calibration, and the camera lens and CCD line distortion calibration. First, a brief introduction is given on the imaging properties of the GFXJ camera. Then, the GNSS lever arms and IMU boresight misalignment calibration models are built for the GFXJ camera. Next, a piecewise self-calibration model based on the CCD viewing angle is established for the GFXJ lens and CCD line distortion calibration. Subsequently, an iterative two-step calibration scheme is proposed for the geometric calibration. Finally, experiments were implemented using multiple flight blocks obtained in the Songshan remote sensing comprehensive field and the Hegang area of Heilongjiang Province. Through calibration experiments, geometric calibration values were obtained for the GNSS lever arms and IMU boresight misalignment. Reliable CAM files were independently generated for the forward, nadir, and backward line arrays. The experiments showed that the proposed GNSS lever arms and IMU boresight misalignment calibration models and the piecewise self-calibration model had good applicability and effectiveness for the GFXJ camera. The proposed two-step calibration scheme can significantly enhance the geometric positioning accuracy of the GFXJ camera. The original direct geopositioning accuracy of the GFXJ is approximately 4 m in the planimetry direction and 6 m in the elevation direction. Using the GNSS lever arms and the IMU boresight misalignment calibration values and the CAM files, the positioning accuracy of the GFXJ camera can fulfill the 3D point accuracy requirements and the 1:1000 mapping accuracy requirements at a 2000 m flight height after aerial triangulation with only several ground control points. The planimetry accuracy is approximately 0.2 m, and the elevation accuracy is less than 0.28 m. In addition, the calibration models and calibration scheme established in this paper can provide a reference for calibration studies on other airborne linear array CCD cameras.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3