UAS-Based Multi-Temporal Rice Plant Height Change Prediction

Author:

Lin Yuanyang1,He Jing1,Liu Gang2,Mou Biao1,Wang Bing1,Fu Rao1

Affiliation:

1. School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China

2. School of Earth Sciences, Chengdu University of Technology, State Key Laboratory of Geological Hazard Prevention and Geological Environment Protection, Chengdu 610059, China

Abstract

Analyzing rice growth is essential for examining pests, illnesses, lodging, and yield. To create a Digital Surface Model (DSM ) of three important rice breeding stages, an efficient and fast (compared to manual monitoring) Unoccupied Aerial System was used to collect data. Outliers emerge in DSM as a result of the influence of environ- ment and equipment, and the outliers related to rice not only affect the extraction of rice growth changes but are also more challenging to remove. Therefore, after using ground control points uniform geodetic level for filtering, statistical outlier removal (SOR ) and quadratic surface filtering (QSF ) are used. After that, differential operations are applied to the DSM to create a differential digital surface model that can account for the change in rice plant height. Comparing the prediction accuracy before and after filtering: R2 = 0.72, RMSE = 5.13cm, nRMSE = 10.65% for the initial point cloud; after QSF, R2 = 0.89, RMSE = 2.51cm, nRMSE = 5.21%; after SOR, R2 = 0.92, RMSE = 3.32cm, nRMSE = 6.89%. The findings demonstrate that point cloud filtering, particularly SOR, can increase the accuracy of rice monitoring. The method is effective for monitoring, and after filtering, the accuracy is sufficiently increased to satisfy the needs of growth analysis. This has some potential for application and extension.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3