Affiliation:
1. Eskisehir Technical University, Institute of Earth and Space Sciences, Eskisehir, Turkey
Abstract
Monitoring trees is necessary to manage and take inventory of forests, monitor plants in urban areas, distribute vegetation, monitor change, and establish sensitive and renewable agricultural systems. This study aims to automatically detect, count, and map apricot trees in an orthophoto,
covering an area of approximately 48 ha on the ground surface using two different algorithms based on deep learning. Here, Mask region-based convolutional neural network (Mask R-CNN) and U-Net models were run together with a dilation operator to detect apricot trees in UAV images, and the
performances of the models were compared. Results show that Mask R-CNN operated in this way performs better in tree detection, counting, and mapping tasks compared to U-Net. Mask R-CNN with the dilation operator achieved a precision of 98.7%, recall of 99.7%, F1 score of 99.1%, and intersection
over union (IoU) of 74.8% for the test orthophoto. U-Net, on the other hand, has achieved a recall of 93.3%, precision of 97.2%, F1 score of 95.2%, and IoU of 58.3% when run with the dilation operator. Mask R-CNN was able to produce successful results in challenging areas. U-Net, on the other
hand, showed a tendency to overlook existing trees rather than generate false alarms.
Publisher
American Society for Photogrammetry and Remote Sensing
Subject
Computers in Earth Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献