Model-Driven Precise Degradation Analysis Method of Highway Marking Using Mobile Laser Scanning Point Clouds

Author:

Ma Ruifeng1,Ge Xuming2,Zhu Qing2,Jia Xin1,Jiang Huiwei3,Chen Min2,Liu Tao1

Affiliation:

1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China

2. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China

3. National Geomatics Center of China, Beijing, 100830, China

Abstract

Highway markings (HMs) are representative elements of inventory digitalization in highway scenes. The accurate position, semantics, and maintenance information of HMs provide significant support for the intelligent management of highways. This article presents a robust and efficient approach for extracting, reconstructing, and degrading analyzing HMs in complex highway scenes. Compared with existing road marking extraction methods, not only can extract HMs in presence of wear and occlusion from point clouds, but we also perform a degradation analysis for HMs. First, the HMs candidate area is determined accurately by sophisticated image processing. Second, the prior knowledge of marking design rules and edge-based matching model that leverages the standard geometric template and radiometric appearance of HMs is used for accurately extracting and reconstructing solid lines and nonsolid markings of HMs, respectively. Finally, two degradation indicators are constructed to describe the completeness of the marking contour and consistency within the marking. Comprehensive experiments on two existing highways revealed that the proposed methods achieved an overall performance of 95.4% and 95.4% in the recall and 93.8% and 95.5% in the precision for solid line and nonsolid line markings, respectively, even with imperfect data. Meanwhile, a database can be established to facilitate agencies' efficient maintenance.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3