Three-Dimensional Point Cloud Analysis for Building Seismic Damage Information

Author:

Yang Fan1,Fan Zhiwei1,Wen Chao1,Wang Xiaoshan1,Li Xiaoli2,Li Zhiqiang2,Wen Xintao2,Wei Zhanyu3

Affiliation:

1. Hebei Earthquake Agency, Shijiazhuang 050021, China

2. China Earthquake Networks Center, Beijing 100045, China

3. Institute of Geology, China Earthquake Administration, Beijing 100029, China

Abstract

Postearthquake building damage assessment requires professional judgment; however, there are factors such as high workload and human error. Making use of Terrestrial Laser Scanning data, this paper presents a method for seismic damage information extraction. This new method is based on principal component analysis calculating the local surface curvature of each point in the point cloud. Then use the nearest point angle algorithm, combined with the data features of the actual measured value to identify point cloud seismic information, and filter the points that tend to the plane by setting the threshold value. Based on the statistical analysis of the normal vector, the raw point cloud data are deplanarized to obtain the preliminary results of seismic damage information. The density clustering algorithm is used to denoise the initially extracted seismic damage information. Ultimately, we can obtain the distribution patterns and characteristics of cracks in the walls of the building. The extraction result of the seismic damage information point cloud data is compared with the photos collected at the site, showing that the algorithm steps successfully identify the crack and shed wall skin information recorded in the site photos (identification rate: 95%). Point cloud distribution maps of cracked and shed siding areas determine quantitative information on seismic damage, providing a higher level of performance and detail than direct contact measurements.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3