Cloud Detection in ZY-3 Multi-Angle Remote Sensing Images

Author:

Huang Haiyan1,Cheng Qimin1,Pan Yin2,Lyimo Neema Nicodemus3,Peng Hao4,Cheng Gui4

Affiliation:

1. School of Electronics Information and Communications, Huazhong University of Science and Technology, Wuhan, China

2. Alibaba.autonavi Software Co., Ltd., Beijing, China

3. Department of Mathematics, Informatics and Computational Sciences, Sokoine University of Agriculture, Morogoro, Tanzania

4. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China

Abstract

Cloud pollution on remote sensing images seriously affects the actual use rate of remote sensing images. Therefore, cloud detection of remote sensing images is an indispensable part of image preprocessing and image availability screening. Aiming at the lack of short wave infrared and thermal infrared bands in ZY-3 high-resolution satellite images resulting in the poor detection effect, considering the obvious difference in geographic height between cloud and ground surface objects, this paper proposes a thick and thin cloud detection method combining spectral information and digital height model (DHM) based on multi-scale features-convolutional neural network (MF-CNN) model. To verify the importance of DHM height information in cloud detection of ZY-3 multi-angle remote sensing images, this paper implements cloud detection comparison of the data set with and without DHM height information based on the MF-CNN model. The experimental results show that the ZY-3 multi-angle image with DHM height information can effectively improve the confusion between highlighted surface and thin cloud, which also means the assistance of DHM height information can make up for the disadvantage of high-resolution image lacking short wave infrared and thermal infrared bands.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3