An Improved Approach Based on Terrain-dependent Mathematical Models for Georeferencing Pushbroom Satellite Images

Author:

Moradi Behrooz,Zoej Mohammad Javad Valadan,Yaghoobi Sayad,Yavari Somayeh

Abstract

Recently, linear features in remotely sensed imagery have gained much attention because of their unique characteristics compared to other control features. For georeferencing high-resolution satellite images, the observations in the mathematical equations (slope and y-intercept) of the corresponding control lines in the two spaces are considered the same based on recent studies. However, the use of such assumptions causes error and reduces the accuracy of registration. The aim of this article is to present a methodology based on a quasi-observation assumption in the mathematical equations in the process of georeferencing. Experimental results for IKONOS and GeoEye images over two different cities of Iran indicate that the quasi-observation assumption can increase the average registration accuracy up to 48.96% and 24.77% using 3D-affine and rational function models, respectively. This improvement in accuracy increases the processing time by 31.48% over traditional approaches; however, the proposed methodology can be regarded as an efficient solution.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3