Monitoring the Spatiotemporal Dynamics of Urban Green Space and Its Impacts on Thermal Environment in Shenzhen City from 1978 to 2018 with Remote Sensing Data

Author:

Liu Yue,Li Hui,Gao Peng,Zhong Cheng

Abstract

In a developing city, urban green space (UGS) plays an increasingly significant role in improving the urban environment and beautifying the urban landscape. In the meantime, UGS has been substantially and frequently interfered with by human activities. Taking Shenzhen city (a great metropolis of China) as an example, this study investigated the spatio-temporal dynamics of UGS and its influence on the urban thermal environment with Landsat images. From 1978 to 2018, all croplands and more than 50% of water bodies disappeared, while the built-up area increased more than 6 times. The rapid expansion of impervious surface and loss of UGS led to the spread of a surface urban heat island. The study shows that UGS has a significantly mitigating impact on urban land surface temperature, with cold islands mainly located at city parks. The results will be of great significance for improving UGS management, alleviating the urban heat island effect, and establishing a sustainable eco-environment.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3