Self-Supervised Convolutional Neural Networks for Plant Reconstruction Using Stereo Imagery

Author:

Xia Yuanxin,D'Angelo Pablo,Tian Jiaojiao,Fraundorfer Friedrich,Reinartz Peter

Abstract

Stereo matching can provide complete and dense three-dimensional reconstruction to study plant growth. Recently, high-quality stereo matching results were achieved combining Semi-Global Matching (SGM) with deep learning. However, due to a lack of suitable training data, this technique is not readily applicable for plant reconstruction. We propose a self-supervised Matching Cost with a Convolutional Neural Network (MC-CNN) scheme to calculate matching cost and test it for plant reconstruction. The MC-CNN network is retrained using the initial matching results obtained from the standard MC-CNN weights. For the experiment, closerange photogrammetric imagery of an in-house plant is used. The results show that the performance of self-supervised MC-CNN is superior to the Census algorithm and comparable to MC-CNN trained by a Light Detection and Ranging point cloud. Another experiment is performed using stereo imagery of a field beech tree. The proposed self-training strategy is tested and has proved capable of identifying the drought condition of trees from the reconstructed leaves.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3