Redefining the Directional-Hemispherical Reflectance and Transmittance of Needle-Shaped Leaves to Address Issues in Their Existing Measurement Methods

Author:

Wang Jun,Chen Jing M.,Feng Lian,Xu Jianhui,Zhang Feifei

Abstract

The directional-hemispherical reflectance and transmittance of needle-shaped leaves are redefined in this study. We suggest that the reflected and transmitted radiation of a leaf should be distinguished by the illuminated and shaded leaf surfaces rather than the usual separation of the two hemispheres by a plane perpendicular to the incoming radiation. Through theoretical analysis, we found that needle directional-hemispherical reflectance and transmittance measured by two existing techniques, namely Daughtry's method and Harron's method, could be significantly biased. This finding was proved by ray-tracing simulations intuitively as well as by inversions of the PROSPECT model indirectly. We propose the following requirements for needle spectral measurement in an integrating sphere: needles should be fully exposed to the light source, the interfusion of reflected and transmitted radiation on convex needle surfaces should be avoided, and multiple scattering of radiation among needles should be minimized.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3