The Application of Bidirectional Reflectance Distribution Function Data to Recognize the Spatial Heterogeneity of Mixed Pixels in Vegetation Remote Sensing: A Simulation Study

Author:

Yan Yanan,Deng Lei,Liu XianLin

Abstract

Spectral decomposition of mixed pixels can provide information about the abundance of end members but fails to indicate the spatial distribution of end members in vegetation remote sensing. This work is a significant attempt to use the bidirectional reflectance distribution function (<small>BRDF</small>) characteristics of mixed pixels in the prediction of spatial-heterogeneity metrics. Data sets from this function with different spatial distributions were constructed by the discrete anisotropic radiative transfer model, and three spatial aggregation and dispersion metrics were calculated: percentage of like adjacencies, spatial division index, and aggregation index. A simple linear regression method was used to construct the prediction model of spatial aggregation and dispersion metrics. The potential of multiangle remote sensing model for identifying spatial patterns well was demonstrated, and its importance was found to differ for different spatial aggregation and dispersion metrics. Specifically, the precision of the model based on multiangle reflectance used for predicting the spatial division index could meet a minimum root mean square of 5.95%. The reflectance features from backward observation on the principal plane play the leading role in recognizing the spatial heterogeneity of mixed pixels. The prediction model is sufficiently robust to distinguish the same vegetation with different growth trends, but also performs well when the ground objects have a smaller reflectance difference in the mixed pixels in a certain band. This study is expected to offer a new thought for spatial-heterogeneity identification of ground objects and thus promote the development of remote sensing technology in assessing spatial distribution.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3