Using 250-m MODIS Data for Enhancing Spatiotemporal Fusion by Sparse Representation

Author:

Wang Liguo,Wang Xiaoyi,Wang Qunming

Abstract

Spatiotemporal fusion is an important technique to solve the problem of incompatibility between the temporal and spatial resolution of remote sensing data. In this article, we studied the fusion of Landsat data with fine spatial resolution but coarse temporal resolution and Moderate Resolution Imaging Spectroradiometer (MODIS) data with coarse spatial resolution but fine temporal resolution. The goal of fusion is to produce time-series data with the fine spatial resolution of Landsat and the fine temporal resolution of MODIS. In recent years, learning-based spatiotemporal fusion methods, in particular the sparse representation-based spatiotemporal reflectance fusion model (SPSTFM), have gained increasing attention because of their great restoration ability for heterogeneous landscapes. However, remote sensing data from different sensors differ greatly on spatial resolution, which limits the performance of the spatiotemporal fusion methods (including SPSTFM) to some extent. In order to increase the accuracy of spatiotemporal fusion, in this article we used existing 250-m MODISbands (i.e., red and near-infrared bands) to downscale the observed 500-m MODIS bands to 250 m before SPTSFM-based fusion of MODIS and Landsat data. The experimental results show that the fusion accuracy of SPTSFM is increased when using 250-m MODIS data, and the accuracy of SPSTFM coupled with 250-m MODIS data is greater than the compared benchmark methods.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3