Analyzing the Contribution of Training Algorithms on Deep Neural Networks for Hyperspectral Image Classification

Author:

Günen Mehmet Akif,Atasever Umit Haluk,Beşdok Erkan

Abstract

Autoencoder (<small>AE</small>)-based deep neural networks learn complex problems by generating feature-space conjugates of input data. The learning success of an AE is too sensitive for a training algorithm. The problem of hyperspectral image (<small>HSI</small>) classification by using spectral features of pixels is a highly complex problem due to its multi-dimensional and excessive data nature. In this paper, the contribution of three gradient-based training algorithms (i.e., scaled conjugate gradient (<small>SCG</small>), gradient descent (<small>GD</small>), and resilient backpropagation algorithms (<small>RP</small>)) on the solution of the HSI classification problem by using AE was analyzed. Also, it was investigated how neighborhood component analysis affects classification performance for training algorithms on HSIs. Two hyperspectral image classification benchmark data sets were used in the experimental analysis. Wilcoxon signed-rank test indicates that RB is statistically better than SCG and GD in solving the related image classification problem.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3