Rice Identification Under Complex Surface Conditions with CNN and Integrated Remote Sensing Spectral-Temporal-Spatial Features

Author:

Liu Tianjiao1,Duan Sibo1,Chen Jiankui2,Zhang Li3,Li Dong4,Li Xuqing5

Affiliation:

1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China

2. School of Artificial Intelligence, Hebei Oriental University, Langfang, China

3. College of Big Data and Information Engineering, GuiZhou University, GuiYang, China

4. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China

5. North China Institute of Aerospace Engineering, Langfang 065000, China

Abstract

Accurate and effective rice identification has great significance for the sustainable development of agricultural management and food security. This paper proposes an accurate rice identification method that can solve the confused problem between fragmented rice fields and the surroundings in complex surface areas. The spectral, temporal, and spatial features extracted from the created Sentinel-2 time series were integrated and collaboratively displayed in the form of visual images, and a convolutional neural network model embedded with integrated information was established to further mine the key information that distinguishes rice from other types. The results showed that the overall accuracy, precision, recall, and F1-score of the proposed method for rice identification reached 99.4%, 99.5%, 99.5%, and 99.5%, respectively, achieving a better performance than the support vector machine classifier. Therefore, the proposed method can effectively reduce the confusion between rice and other types and accurately extract rice distribution information under complex surface conditions.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3