Parcel-Level Crop Classification in Plain Fragmented Regions Based on Multi-Source Remote Sensing Images

Author:

Zhang Qiao1,Luo Ziyi1,Shen Yang2,Wang Zhoufeng1

Affiliation:

1. School of Geoscience and Technology, Southwest Petroleum University

2. Third Geodetic Surveying Brigade of Ministry of Natural Resources

Abstract

Accurately obtaining crop cultivation extent and estimating the cultivated area are significant for adjusting regional planting structure. This article proposes a parcel-level crop classification method using time-series, medium-resolution, remote sensing images and single-phase, high-spatial-resolution, remote sensing images. The deep learning semantic segmentation network feature pyramid network with squeeze-and-excitation network (FPN???SENet) and multi-scale segmentation were used to extract cultivated land parcels from Gaofen-2 imagery, while the pixel-level crop types were classified by using support vector machine algorithms from time-series Sentinel-2 images. Then, the parcel-level crop classification was obtained from the pixel-level crop types and land parcels.

Publisher

American Society for Photogrammetry and Remote Sensing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3