Extraction of Impervious Surface Using Sentinel-1A Time-Series Coherence Images with the Aid of a Sentinel-2A Image

Author:

Wu Wenfu,Teng Jiahua,Cheng Qimin,Guo Songjing

Abstract

The continuous increasing of impervious surface (IS) hinders the sustainable development of cities. Using optical images alone to extract IS is usually limited by weather, which obliges us to develop new data sources. The obvious differences between natural and artificial targets in interferometric synthetic-aperture radar coherence images have attracted the attention of researchers. A few studies have attempted to use coherence images to extract IS—mostly single-temporal coherence images, which are affected by de-coherence factors. And due to speckle, the results are rather fragmented. In this study, we used time-series coherence images and introduced multi-resolution segmentation as a postprocessing step to extract IS. From our experiments, the results from the proposed method were more complete and achieved considerable accuracy, confirming the potential of time-series coherence images for extracting IS.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Optical and SAR Image Deep Feature Fusion in Semantic Segmentation;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. CroFuseNet: A Semantic Segmentation Network for Urban Impervious Surface Extraction Based on Cross Fusion of Optical and SAR Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

3. Urban Impervious Surface Extraction Using Seasonal Time Series SAR Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3