Cropland Extraction Based on OBIA and Adaptive Scale Pre-estimation

Author:

Ming Dongping,Zhang Xian,Wang Min,Zhou Wen

Abstract

Object-based image analysis (OBIA) provides a solution for cropland extraction from high spatial resolution remote sensing images. Currently, scale parameter selection is often dependent on subjective trial-and-error methods or post-evaluation of multi-segmentation, which directly reduces efficiency of cropland extraction. This paper proposes a cropland extraction method combining spatial statistics based adaptive scale parameter pre-estimation and object-oriented classification. SPOT5 multi-spectral image in Baishan is used as experimental data to verify the validity of the methodology. Experimental results show that the pre-estimated scale parameter can yield a classification result with both high classification accuracy and completeness for extracting cropland information. This presented method avoids the time-consuming trial-and-error practice by accelerating the object-oriented classification procedure. Hierarchical rule set based classifications achieve higher accuracies and lower fragmentation than nearest neighbor-supervised classification. Additionally, this methodology can be rapidly transplanted into different regions and it is helpful for dynamic land-use monitoring and precision agriculture.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3