Author:
Natalya Panova ,Nina P. Allan ,Noelle C. Rubas ,Rosa H. Lee ,Braden P. Kunihiro ,Lesley Umeda ,Rafael Peres ,Ruben Juarez ,Maunakea Alika K.
Abstract
Whole-genome SARS-CoV-2 sequencing tools are crucial for tracking the COVID-19 pandemic. However, current techniques require sampling of actively infectious patients following COVID-19 testing to recover enough SARS-CoV-2 RNA from the nasopharyngeal passage, which rapidly clears during the first few weeks of infection. A prospective assessment of the viral genome sourced from recovered non-infectious patients would greatly facilitate epidemiological tracking. Thus, we developed a protocol to isolate and sequence the genome of SARS-CoV-2 from stool samples of post-acute SARS-CoV-2 patients, at timepoints ranging from 10-120 days after onset of symptoms. Stool samples were collected from patients at varying timepoints post-convalescence, and viral DNA was isolated and sequenced using the QIAamp Viral RNA Mini Kit (Qiagen Inc.) and Ion Ampliseq™ Library Kit Plus (Life Technologies Corporation). Capacity of neutralizing antibodies in patient plasma was tested using a Luminex panel (Coronavirus Ig Total Human 11-Plex ProcartaPlex™ Panel, ThermoFisher). Of 64 samples obtained from post-acute patients, 21 (32.8%) yielded sufficient material for whole-genome sequencing. This allowed us to identify widely divergent phylogenetic relativity of the SARS-CoV-2 genome from post-acute patients living in the same households and infected around the same time. Additionally, we observed that individuals who recovered from infection expressed varying degrees of antibodies against SARS-CoV-2 structural proteins that corresponded to distinct variants. Interestingly, we identified a novel point mutation in the viral genome where infected patients expressed antibodies with a significantly reduced capacity to neutralize the virus in vitro relative to that of those infected with the wild-type strain. Altogether, we demonstrate a protocol to successfully sequence the SARS-CoV-2 genome from stool samples from patients up to 4 months post-infection, which can be applied to studies that assess the relationship between variants and immune response post-hoc and safe monitoring of the SARS-CoV-2 genome during the pandemic.
Publisher
European Open Science Publishing
Reference38 articles.
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727–33.
2. Johns Hopkins Coronavirus Resource Center. COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center. 2022 [cited 2022 Feb 4]. Available from: https://coronavirus.jhu.edu/map.html
3. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020 Jul;24:91–8.
4. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270–3.
5. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021 Mar;19(3):141–54.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献