Crude Oil Trend Prediction During COVID-19: Machine Learning with Randomized Search and Bayesian Optimization

Author:

Firoozabadi Seyyed Soroosh,Ansari Mehdi,Vasheghanifarahani Farhad

Abstract

This study delves into an innovative research framework aimed at enhancing the precision of crude oil return rate predictions. The study, which holds significant implications for financial institutions, investors, central banks, and corporations operating in volatile markets, rigorously evaluates the performance of three advanced machine learning models—LSTM, XGBoost, and SVM. Leveraging optimization and cross-validation techniques, the research particularly focuses on refining forecasting accuracy amidst the challenges posed by the COVID-19 epidemic. This study explores randomized search and Bayesian optimization, providing a comprehensive understanding of their application in the context of improving model performance and decision-making in the dynamic crude oil market. The findings indicate the accuracy of models with different evaluation metrics and reveal that the SVM demonstrates superior accuracy in regression analysis during the pandemic.

Publisher

European Open Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3