Single-Phase Robust Charger with High Power Quality for Electric Vehicle Application

Author:

Shariff Samir M.

Abstract

The widespread use of electric vehicles (EVs) necessitates the development of a robust charging infrastructure. The goal of this research paper is to create a high-quality, single-phase charger for electric cars. The purpose of this design is to provide a charger that is both fast and efficient but also protects against power quality problems including harmonics, power factor correction, and voltage variations. A single-phase–single-stage improved power quality EV charger for small and medium power applications has been designed and simulated. A single DC-DC converter is utilized for constant charging and improved power quality operation. The charger presented exhibits improved power quality as sinusoidal current is drawn from the utility grid supply with the total harmonic distortion (THD) in compliance with the IEEE 519 and IEC 61000-3-2 standards. In order to charge the battery of an electric vehicle, most two-stage converters first use a boost converter for power factor correction (PFC), and then they use a DC-DC converter that can accept any input voltage. These two-stage conversions are inefficient and use more parts than necessary. This work proposes a PFC converter based on a single-stage switching inductor Cuk converter, which has the advantages of high step-down gain, low current stress, high efficiency, and a small number of components. The suggested converter’s operational analysis and design equations are performed in continuous current mode. The proposed converter is the subject of extensive mathematical modelling, analysis, simulation, and experimentation presented in this study. With both constant voltage (CV) and constant current (CC) loads, the proposed converter’s performance is analysed with regard to power quality indices like voltage total harmonic distortion (THD), current THD, and total power factor. Additionally, in CV mode and CC mode, the suggested converter’s dynamic performance with battery charging is evaluated in relation to the extensive supply changes. The developed charger presents a reliable and efficient solution for EV charging, fostering the transition to a cleaner and more sustainable transportation system.

Publisher

European Open Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3