Evaluation of Machine Learning Approach for Sentiment Analysis using Yelp Dataset

Author:

Sadikin Mujiono,Fauzan Abi

Abstract

Due to the abundance of text data representing public opinion, the Sentiment Analysis study is getting more and more important. Various techniques and methods have been proposed to address the issues. One of those techniques is deep learning algorithms which have been used to achieve great results in Natural Language Processing (NLP) applications. Sentiment Analysis is a part of NLP application that extracts emotional information from texts. In this study, we investigate the performance of sequence-based model, i.e., LSTM, compared with multi-layer perceptron Neural Network (NN) to classify the polarity of the text review based on negative or positive. The dataset used in this study is a restaurant review taken from the Yelp website. The dataset is trained using Word2vec word embedding to convert words contained in the dataset into numerical vector representation which is used as the deep learning model input. Based on the experiment results, it is shown that the LSTM model is outperformed compared to the multi-layer NN model. The best accuracy performance provided by LSTM model is 91%, whereas the best accuracy performance of multi-layer NN model is 76%.

Publisher

European Open Science Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Review of Sentiment Analysis: Techniques, Datasets, Limitations, and Future Scope;2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT);2024-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3