Numerical Investigation of High Efficiency Cu₂SnSe₃ Thin Film Solar Cell with a Suitable ZnSe Buffer Layer Using SCAPS 1D Software

Author:

Biswas Sunirmal Kumar,Ahmed Md. Mostak,Orthe Mst. Farzana,Sumon Md. Shamsujjoha,Sarker Kushal

Abstract

As the world’s energy demand continues to grow, thin-film solar cells are poised to play an increasingly important role in meeting that demand. In this research, we have proposed and simulated a high-efficiency Cu2SnSe3- based thin film solar cell structure using a solar cell capacitance simulator (SCAPS-1D) software. The numerical performance of Cu2SnSe3 thin films solar cell with ZnO:Al as the electron transport layer (ETL), ZnSe as the buffer layer, SnS as the hole transport layer (HTL), Ag as the front and Ni as the back contact with the structure (Ag/ZnO:Al/Cu2SnSe3/SnS/Ni) has been studied. This simulation intended to investigate the effect of the ZnO:Al electron transport layer and SnS hole transport layer on the performance of the proposed solar cell. The device was optimized concerning the thickness, temperature, series and shunt resistance, donor density of the Electron transport layer, back contact metal work function, and acceptor density of the Cu2SnSe3-based thin film solar cell. The thickness of the ETL, buffer, absorber, and HTL was optimized to 0.2 μm, 0.05 μm, 1.5 μm, and 0.1 μm, respectively. The proposed cadmium-free Cu2SnSe3 thin films solar cell exhibited a conversion efficiency of 31.04%, VOC of 1.08 V, JSC of 34.11 mA/cm2, and FF of 83.84%. As a result, due to its low cost, earth-abundant, non-toxicity, and high efficiency, the suggested Cu2SnSe3-based solar cell may be an attractive candidate for thin film solar cells.

Publisher

European Open Science Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3