Author:
Almarimi Abdelsalam A.,Enbiah Ezzedin M.
Abstract
Named Entity Recognition (NER) is a computational linguistic concept that is used to find and classify appropriate nouns in a text such as person names, geographical locations, and organizations. Such a concept is fundamental in the field of natural language processing. In Libya, many private and public institutions suffer from using the proper translation of entity names from Arabic language into English. Therefore, in this paper, we are concerned with analyzing Arabic articles to extract and recognize entity names. A recognition system is developed for recognizing names of persons, academic institutions, and cities in Libya. At first, a training corpus and dictionaries are built for the intended entity names in this research. Then, the aspects of the entity names are studied, and their patterns and rules are designed. Then, the implementation is performed using Nooj linguistic language. The recognition of person names and Libyan cities and academic institutions was carried out. Statistics showed the frequencies of the appearance rate of person names, academic institutions, and cities in our training corpus. The obtained results are promised and met the research goals for tackling the problem of Arabic named entity recognition.
Publisher
European Open Access Publishing (Europa Publishing)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Named Entity Recognition for Identifying Entities Related to Illegal Migration in Libya: An Analysis of Twitter Textual Data;2024 IEEE 4th International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2024-05-19