Investigations of Decoupled Trigonometric Saturated and Fuzzy Logic Techniques for the Automatic Frequency Control of Islanded Microgrid

Author:

Alshehri Mohammed Ali,Kumar R. Sreerama

Abstract

This paper involves the investigation of new techniques for the automatic load frequency control of islanded Microgrids. Microgrids are being established as a part of smart grid environment. In modern power systems, smart grid represents the solution for many of traditional power system problems such as frequency fluctuations. Frequency fluctuations have negative consequences in terms of electrical equipment life, production cost and production losses relative to costumers and electricity producers. So, the frequency of power system must be kept in acceptable range. In order to operate a power system with fixed frequency, it is necessary to always maintain a balance between the generation and the consumption of active power. The frequency droop control methods are widely used to control active power and frequency of the parallel synchronous generators in the traditional power grid. At present, this method has also been applied to the control of parallel inverters to share the load demand in proportion to their ratings. In order to improve the frequency control of traditional droop control technique applied in islanded microgrid, It is proposed to investigate the Decoupled Trigonometric Saturated (DTS) and fuzzy droop control techniques on islanded microgrids which uses meshed parallel inverter systems. To verify the performance of the proposed ALFC based on Decupled trigonometric saturated controller, fuzzy PI controller the MATLAB/SIMULINK environment is used.

Publisher

European Open Science Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secondary Frequency Control of Decoupled Trigonometric Saturated Droop Controller for Islanded Low-Voltage Mesh Microgrid with Linear Load;2023 13th International Conference on Power, Energy and Electrical Engineering (CPEEE);2023-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3